Massassauga Rattlesnake Overwintering Lifezone

Congratulations to lab member, Anne Yagi on publishing a life’s work of research on the overwintering lifezone of the Eastern Massassauga rattlesnake! The final proofs have been sent back to the publisher and we are anxiously awaiting it to make it to press:

Summary of the study here, with links to the paper below.

Temperate snakes occupy overwintering sites for most of their annual life cycle. Microhabitat characteristics of the hibernaculum are largely undescribed yet are paramount in ensuring snake overwintering survival.

We hypothesized that snakes survive hibernation within a vertical subterranean space that we termed a “life zone”, that is aerobic, flood, and frost-free throughout winter and did this by studying an isolated, endangered population of Massasaugas (Sistrurus catenatus) inhabiting an anthropogenically-altered peatland and monitored the subterranean habitat during a period of environmental stochasticity.

Lifezone concept (Credit: A Yagi)

Initial radio telemetry confirmed that snakes moved between altered and natural habitats during the active season and showed hibernation site fidelity to either habitat. We used a grid of groundwater wells, and frost tubes installed in each hibernation area to measure lifezone characteristics over 11 consecutive winters.

The lifezone within the impacted area was periodically reduced to zero during a flood-freeze cycle, while the lifezone in the natural area was maintained.

Sample figure from the paper showing year by year changes in the winter lifezone size (cm = depth or size underground that remains frost and flood free). Mined sites refer to an anthropogenically disturbed site where surface peat extraction had historically occurred. Unmined site is a peat bog. Flood events refer to a period of time when large regions of the site experienced sustained surface flooding.

Soil-depth and flood status best predicted lifezone size. Thermal buffering and groundwater dissolved oxygen increased with lifezone size, and annual Massasauga encounters were significantly correlated with lifezone size.

This analysis suggests a population decline occurred when lifezone size was reduced by flooding. Our data give support to the importance and maintenance of a lifezone for successful snake hibernation.

Our methods apply to subterranean hibernation habitats that are at risk of environmental stochasticity, causing flooding, freezing, or hypoxia, and speak to the issues regarding management of sensitive watersheds inhabitated by species-at-risk.


Snake well installation in the field to test the overwintering lifezone.

Citation

Yagi, A, Planck, RJ, Yagi, KT, and Tattersall GJ. 2020. A long-term study on Massasaugas (Sistrurus catenatus) inhabiting a partially-mined peatland: presenting a standardized method to characterize snake overwintering habitat. Journal of Herpetology. 54: 235-244. https://journalofherpetology.org/doi/full/10.1670/18-143

For further information, please see 8Trees.ca.

Avian Thermal Biology Visitor

The lab will be hosting a PhD student from Spain for the next 3 months.

Núria Playà Montmany from the University of Extremadura has just arrived (I’m a few days late, she arrived in late January!). I met Núria last summer defending her poster at the SEB meeting in Sevilla. She will be becoming a thermal imaging expert while she is here!

With overlapping interests in avian physiology and the lab’s interests in thermal biology and studying animal responses to climate change, we hope to have a productive visit. Here is a link to Núria’s blog:

https://birdsfacingclimatechange.wordpress.com/author/nuriaplaya/

Welcome to the lab, Núria! Let’s hope you have a good few months working with us.

Visitor to the Lab

It has been a busy January, and so my updates are out of date! From Jan 10th to the 24th, I hosted Dr. Agnes Jullian Vinet in the lab, mostly to learn thermal imaging for future human thermogenesis research.

Dr. Vinet was a welcome visitor, enduring the dark, but not so cold, Canadian winter with us! Thanks to Stephen Cheung’s lab, Gary Hodges and Leed McNab for helping to host Agnes.

Hopefully we can return the favour and visit her lab next summer!

Problems with assumptions in macroecology

Thanks to some very kind and smart colleagues, we have an editorial published in Ecology and Evolution!

https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.5721

Here is the citation:

Justin G. Boyles, Danielle L. Levesque, Julia Nowack, Michał S. Wojciechowski, Clare Stawski, Andrea Fuller, Ben Smit, and Glenn J. Tattersall 2019. An oversimplification of physiological principles leads to flawed macroecological analyses. https://doi.org/10.1002/ece3.5721

Take home message? Few endotherms are homeothermic, so they do not conform to assumptions of the Scholander-Irving model. Taking predictions from the SI model based on a broad range of lab studies can lead to huge errors in predictions. A re-assessment of macroecological predictions using this approach is warranted.

Demonstration of the inherent limitations of using body temperature (Tb) and the lower critical temperature (Tlc) of the thermal neutral zone to calculate thermal conductance (C) when Tb and Tlc are poorly defined.

Congratulations Anne Yagi!

Congratulations to Anne Yagi for her Blue Racer Award from the Canadian Herpetological Society. The Blue Racer award is presented to an individual in recognition of cumulative contributions to the conservation of amphibians and reptiles in Canada. 

For full details on the announcement:

https://8trees.ca/news/f/canadian-herpetological-society-honors-8trees-inc-president?fbclid=IwAR3FdYgO-FzXHJvmlnMafhH6Scb6qJiqKCz35iCbLoYZDJhw77bhTyWZiUA

Bridgeman now the Master

When he left the lab to write up his thesis, he was but the learner…now, HE is the Master.

Congratulations, Justin Bridgeman for a successful defence! Justin’s thesis earlier today was on “Behavioural thermoregulation and escape behaviour in the round goby”.

Thanks to the selfless efforts of the committee members (Dr. Gaynor Spencer, Dr. Liette Vasseur, and Dr. Patricia Wright), external examiner (Dr. Dennis Higgs, U Windsor), and committee chair (Dr. Cheryl McCormick).

Thank to all the lab mates for supporting Justin and welcoming him back for his brief visit.

All the best in the future Justin! We look forward to the manuscripts…and for a place to crash when we visit you in Halifax! 😉

Toucans of the atlantic

Earlier this summer, I was lucky enough to visit the Isle of May, Scotland to fulfill a long-time ambition to collect thermal image data on puffins in the wild. Ever since we published our work on the toucan in 2009, I have wanted to study the puffins, examining evidence for elevated capacity to control or distribute body heat through their uniquely colourful bill. Living in a cool climate with a large radiator like their bill presents a unique opportunity to test our hypotheses. In spring of 2018 I managed to visit the Elliston, Newfoundland puffin colony to start this project, but the distance to view a little too far to obtain high quality results.

Well, the short story is that they do show an extraordinary capacity to do so! Here is just a sample image (from the 200 Gb of videos):

Active and basking Atlantic puffins show capacity for intense heat transfer to the bill. The one above has recently landed back at the colony, presumably foraging although in this case, there is no evidence of food. Other images show cool bills, as we have seen in many other bird species, demonstrating the vasomotor control over blood flow to the bill is a fairly generalised phenomenon.
Infrared thermal video of an Atlantic puffin in May 2018 – early arrival at nest and investigating burrows.
Atlantic puffin in the rain.

If I only had the time to conduct the data analysis, I could put some numbers on these values. I certainly have my work cut out for me, examining those returning from the water with food vs. those basking and resting. I have a few other thoughts about these data that I hope to extract.

Many thanks must go to the town of Elliston, Newfoundland and the Atlantic puffin colony there, the Centre for Ecology and Hydrology (UK), the Isle of May (Scotland) Scientists, and especially Mark Newell for hosting me at the Isle of May, and Mike Harris for introducing us. Sorry it took so long to post this.

Further Reading

Tattersall, GJ, Arnaout, B, and Symonds, MRE.  2017.  The evolution of the avian bill as a thermoregulatory organ. Biological Reviews 92: 1630-1656. doi:10.1111/brv.12299

Greenberg, R, Cadena, V, Danner, RM, and Tattersall GJ. 2012. Heat loss may explain bill size differences between birds occupying different habitats. PLoS One, 7: e40933. 

Symonds, MRE and Tattersall, GJ. 2010. Geographical variation in bill size across bird species provides evidence for Allen’s rule.American Naturalist. 176: 188-197.

Tattersall, GJ, Andrade, DV, and Abe, AS. 2009. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.Science, 325: 468-470.

Delayed homeothermy in high-atltitude deer mice

Congratulations to Cayleih Robertson for her paper that just came out today in the Proceedings of the Royal Society B, entitled:

Development of homeothermic endothermy is delayed in high-altitude native deer mice (Peromyscus maniculatus)

This project is the result of Cayleih’s PhD research in Dr. Grant McClelland’s lab. I was lucky enough to be involved with these talented scientists, although all the credit goes to Cayleih for her hard work. What a tour de force of physiology, biochemistry and imaging.

Sample video of the experimental paradigm examining cooling in neonatal mice using infrared thermal imaging. For more details, see the link to the paper above.

Backyard Biology

Earlier this year, I put a raspberry pi on a robin nest in my backyard. Used it as an opportunity to test out tweet streaming from my twitter account, so am posting the link here to the lab blog. Sorry it took so long, I was away from stable internet access for the past month.