Insect thermogenesis

A luna moth was on our window outside the department yesterday.

So, we brought it inside for a lab show and tell. Shivering up a storm….

Thorax temperature up to 32C, while the abdomen temperature was still below 20C (the lab was ~21C, and the moth had been briefly placed in a cold fridge).

CSZ 2019

Another year passes and another good Canadian Society of Zoologists meeting.

Here is Nick Sakich presenting his first scientific poster. Well done Nick! Nick had a lot of attention at his poster. Maybe we can get Nick to come to CSZ next year!

And here is a rogue’s gallery of happy scientists congratulating Cayleih Robertson (second from right) for winning the Hoar Award for the best student presentation at the CSZ! Cayleih is studying her PhD in Dr. Grant McClelland’s (left) lab, conducted her MSc with Dr. Patricia Wright (second from left), and her undergraduate thesis with Dr. Suzie Currie (middle). I (far right) have the distinct privilege of being on the receiving end of Cayleih’s collaborative nature, in that she has involved my lab with a portion of her PhD (thus, why I’m in the picture!). Full credit has to go to Cayleih for her spirit of inclusivity, scientific curiosity, and intelligence. And of course, she gave a great talk! Congratulations, Cayleih!

Student-driven research

A few months ago, my MSc student, Nick Sakich, received notice that he was successful in receiving a Company of Biologists Travelling Fellowship to continue his collaborative work he began while a student at the University of Guelph.

Congratulations, Nick!

He will be visiting Aruba in June to finish up his research. Although envious of journey, we all know he has a lot in store for him in planning for the trip and wish him all the success.

Shape Shifting Birds – PhD Opportunity

Please consider applying for this PhD Opportunity in Australia to work with my colleague, Dr Matthew Symonds on Shape-Shifting Birds.

This research forms part of an ARC Discovery Project (PI: Symonds; CI: Klassen & Tattersall) whose goal is to determine whether changes in body shape are an evolutionary response to climate change. Endothermic animals (such as birds) have a range of adaptations for dealing with the temperatures they experience. One such adaptation is body shape: birds in warmer climates tend to have large extremities (bills and legs), increasing their surface area and enabling loss of excess heat. Adaptations to climate (and hence climate change) can occur quickly, and there is evidence of significant increases in bird extremities in recent years – a novel potential consequence of climate change. Whether this represents an evolutionary response to climate change is unknown, nor do we know what characteristics make specific bird species liable to respond to climate change in this way, or what the likely consequences of such responses are.

The student will undertake an extensive comparative analysis of Australian birds, designed to identify a) which bird species are showing changes in body shape (bill and leg morphology); b) what ecological (life- history, behaviour, habitat) factors determine such responses; c) whether these changes relate to fitness/survival and d) whether such changes are linked to long-term populations trends in Australian birds.

The project will involve extensive work in Australian museum collections, measuring bird morphology using traditional and modern (3D-scanning) techniques. There is also a strong analytical component, involving use of long-term field data on Australian bird species as well as phylogenetic comparative analysis of large-scale ecological data sets for Australian birds.

Please send an application letter, together with your CV, to Dr Matthew Symonds (matthew.symonds@deakin.edu.au).

Further information can be found in our review papers:

Symonds, MRE and Tattersall, GJ. 2010. Geographical variation in bill size across bird species provides evidence for Allen’s rule.American Naturalist. 176: 188-197.

Tattersall, GJ, Arnaout, B, and Symonds, MRE.  2017.  The evolution of the avian bill as a thermoregulatory organ. Biological Reviews 92: 1630-1656. doi:10.1111/brv.12299