Fish get the “rotten egg gas” chills.

At long last, resulting from herculean efforts of a number of former students, our paper is published. Out today in Royal Society Open Science, our paper entitled: “Hydrogen sulfide exposure reduces thermal set point in zebrafish” represents the efforts of two honours students (JC Shaw and CD Dobell) and the writing and analytical skills of a great PDF and colleague (DA Skandalis).

Here is a link to the study and full citation:

Skandalis DA, Dobell CD, Shaw JC, Tattersall GJ. 2020 Hydrogen sulfide exposure reduces thermal set point in zebrafish. R. Soc. Open Sci. 7: 200416.

https://royalsocietypublishing.org/doi/10.1098/rsos.200416

We tested whether dissolved H2S in the water will alter thermal preference. Previously, work in mice has suggested that mice could be induced to adopt a “hibernation-like” state, although there was some doubt (in the literature) as to whether H2S signalled a change in thermoregulatory state or simply acted as a metabolic inhibitor. By testing this in zebrafish, we could test formally whether they prefer cooler temperatures with H2S exposure, and they did. Not only did they choose to cool down, but they continued to make thermoregulatory decisions, swimming back and forth between cool and warmer water, suggesting they are still making thermoregulatory decisions and not simply caught in the cold water. So…yeah, complicated. H2S might induce a behavioural anapyrexia (a lowered thermal set-point). We discuss the potential environmental and neurophysiological context in the paper for those interested. The rotten egg reference is to the smell of H2S gas.

To conduct this study, we used a system built by Brock University’s Technical Services and employed in our research lab that allows us to track fish in a two chamber thermal shuttle box:

Schematic of the Shuttle Box System (see Figure S1 in the paper).

This setup allows us to heat and cool a tank and track the fish’s choices over time. Here is a thermal image depicting an earlier version of the shuttle box (correcting the spill over of warm-water in the centre can be corrected using baffles and a circular chamber system, but I haven’t taken a new picture with the thermal camera during the pandemic lockdown):

There was some considerable interest in developing H2S as a therapeutic to put mammals and/or tissues/organs into a suspended state. It is intriguing that animals like zebrafish that can behaviourally regulate body temperature continue to do so under this exposure. Anaprexic stategies are commonly seen in ectotherms and perhaps by hijacking an innate signalling system, H2S evokes this response.

Bridgeman now the Master

When he left the lab to write up his thesis, he was but the learner…now, HE is the Master.

Congratulations, Justin Bridgeman for a successful defence! Justin’s thesis earlier today was on “Behavioural thermoregulation and escape behaviour in the round goby”.

Thanks to the selfless efforts of the committee members (Dr. Gaynor Spencer, Dr. Liette Vasseur, and Dr. Patricia Wright), external examiner (Dr. Dennis Higgs, U Windsor), and committee chair (Dr. Cheryl McCormick).

Thank to all the lab mates for supporting Justin and welcoming him back for his brief visit.

All the best in the future Justin! We look forward to the manuscripts…and for a place to crash when we visit you in Halifax! 😉

Shape Shifting Birds – PhD Opportunity

Please consider applying for this PhD Opportunity in Australia to work with my colleague, Dr Matthew Symonds on Shape-Shifting Birds.

This research forms part of an ARC Discovery Project (PI: Symonds; CI: Klassen & Tattersall) whose goal is to determine whether changes in body shape are an evolutionary response to climate change. Endothermic animals (such as birds) have a range of adaptations for dealing with the temperatures they experience. One such adaptation is body shape: birds in warmer climates tend to have large extremities (bills and legs), increasing their surface area and enabling loss of excess heat. Adaptations to climate (and hence climate change) can occur quickly, and there is evidence of significant increases in bird extremities in recent years – a novel potential consequence of climate change. Whether this represents an evolutionary response to climate change is unknown, nor do we know what characteristics make specific bird species liable to respond to climate change in this way, or what the likely consequences of such responses are.

The student will undertake an extensive comparative analysis of Australian birds, designed to identify a) which bird species are showing changes in body shape (bill and leg morphology); b) what ecological (life- history, behaviour, habitat) factors determine such responses; c) whether these changes relate to fitness/survival and d) whether such changes are linked to long-term populations trends in Australian birds.

The project will involve extensive work in Australian museum collections, measuring bird morphology using traditional and modern (3D-scanning) techniques. There is also a strong analytical component, involving use of long-term field data on Australian bird species as well as phylogenetic comparative analysis of large-scale ecological data sets for Australian birds.

Please send an application letter, together with your CV, to Dr Matthew Symonds (matthew.symonds@deakin.edu.au).

Further information can be found in our review papers:

Symonds, MRE and Tattersall, GJ. 2010. Geographical variation in bill size across bird species provides evidence for Allen’s rule.American Naturalist. 176: 188-197.

Tattersall, GJ, Arnaout, B, and Symonds, MRE.  2017.  The evolution of the avian bill as a thermoregulatory organ. Biological Reviews 92: 1630-1656. doi:10.1111/brv.12299